この記事は,因数分解の演習用ページです.
2次の因数分解の公式で解ける問題の追加分となります.以下の演習問題を解いていない人は,先にこちらを解いてみてください.

 

また解説ページはこちらです.

    


  

演習問題1.
次の式を因数分解せよ.
(1)
x^2 + 3xy + 4x + 2y^2 +7y + 3

(2)
x^2 - 7xy + 5x + 12y^2 -17y + 6

(3)
x^2 + 2xy + 3x - 3y^2 + y + 2

(4)
x^2 - 3xy - 3x + 2y^2 + 5y + 2

(5)
2x^2 - 5xy + 8x + 2y^2 - 7y + 6

(6)
2x^2 - 2xy + x - 4y^2 + 4y - 1

(7)
6 x^2 + 7xy + 14x + 2y^2 + 9y + 4

(8)
12x^2 - 17xy - 2x + 6y^2 + 2y - 4

(9)
10x^2 + 3xy + 10x - 4y^2 + 11y - 6

(10)
20 x^2 + 7xy - 7x - 6y^2 + 12y - 6

演習問題1の解答.

解答1.

(1)
x^2 + 3xy + 4x + 2y^2 +7y + 3 \\ = x^2 + (3y + 4)x + (2y + 1)(y + 3) \\ = (x + 2y + 1)(x + y + 3)

(2)
x^2 - 7xy + 5x + 12y^2 -17y + 6 \\ = x^2 + (-7y + 5)x + (4y - 3)(3y - 2) \\ = \{x - (4y - 3)\} \{x - (3y - 2) \} \\ = (x - 4y + 3)(x - 3y + 2)

(3)
x^2 + 2xy + 3x - 3y^2 + y + 2 \\ = x^2 + (2y + 3)x - (3y + 2)(y - 1) \\ = \{x + (3y + 2)\} \{x - (y - 1) \} \\ = (x + 3y + 2)(x - y + 1)

(4)
x^2 - 3xy - 3x + 2y^2 + 5y + 2 \\ = x^2 + (-3y - 3)x + (2y + 1)(y + 2) \\ = \{x - (2y + 1)\} \{x - (y + 2) \} \\ = (x - 2y - 1)(x - y - 2)

(5)
2x^2 - 5xy + 8x + 2y^2 - 7y + 6 \\ = 2x^2 + (-5y + 8)x + (y - 2)(2y - 3) \\ = \{ 2x - (y - 2)\} \{ x - (2y - 3) \} \\ = (2x - y + 2)(x - 2y + 3)

(6)
2x^2 - 2xy + x - 4y^2 + 4y - 1 \\ = 2x^2 + (-2y + 1)x - (2y - 1)^2 \\ = \{2x + (2y - 1)\} \{x - (2y - 1) \} \\ = (2x + 2y - 1)(x - 2y + 1)

(7)
6 x^2 + 7xy + 14x + 2y^2 + 9y + 4 \\ = 6x^2 + (7y + 14)x + (2y + 1)(y + 4) \\ = (3x + 2y + 1)(2x + y + 4)

(8)
12x^2 - 17xy - 2x + 6y^2 + 2y - 4 \\ = 12x^2 - 17xy - 2x + 2( 3y^2 + y - 2) \\ = 12x^2 + (-17y + 2)x + 2(3y - 2)(y + 1) \\ = \{ 4x - (3y - 2)\} \{ 3x - 2(y + 1) \} \\ = (4x - 3y + 2)(3x - 2y - 2)

(9)
10x^2 + 3xy + 10x - 4y^2 + 11y - 6 \\ = 10x^2 + 3xy + 10x + - ( 4y^2 - 11y + 6) \\ = 10x^2 + (3y + 10)x - (4y - 3)(y - 2) \\ = \{5x + (4y - 3)\} \{2x - (y - 2) \} \\ = (5x + 4y - 3)(2x - y + 2)

(10)
20 x^2 + 7xy - 7x - 6y^2 + 12y - 6 \\ = 20x^2 + (7y - 7)x - 6 (y - 1)^2 \\ = \{5x - 2 (y - 1)\} \{4x + 3 (y - 1) \} \\ = (5x - 2y + 2)(4x + 3y - 3)

 

 

   


 

演習問題2.
次の式を因数分解せよ.

(1)
(x^2 + 3x)^2 + 4(x^2 + 3x) + 3

(2)
(x^2 + 7x)^2 + 16(x^2 + 7x) + 60

(3)
x^4 - y^4

(4)
x^4 + 4

演習問題2の解答.

解答2.

(1)
(x^2 + 3x)^2 + 4(x^2 + 3x) + 3 \\ = \{ (x^2 + 3x) + 3 \} \{ (x^2 + 3x) + 1 \} \\ = (x^2 + 3x + 3)(x^2 + 3x + 1)

(2)
(x^2 + 7x)^2 + 16(x^2 + 7x) + 60 \\ = (x^2 + 7x + 10)(x^2 + 7x + 6) \\ = (x + 5)(x + 2)(x + 6)(x + 1) \\ = (x + 6)(x + 5)(x + 2)(x + 1)

(3)
x^4 - y^4 \\ = (x^2 + y^2)(x^2 - y^2) \\ = (x^2 + y^2)(x + y)(x - y)

(4)
x^4 + 4 \\ = x^4 + 4x^2 + 4 - 4x^2 \\ = (x^2 + 2)^2 - (2x)^2 \\ = (x^2 + 2x + 2)(x^2 - 2x + 2)

    


  

  

《PR》
受験生の2人に1人が利用する圧倒的なわかりやすさ!まずは無料でお試し。

    

    

関連ページ

解説ページ

  

次の解説ページ