2次方程式の演習問題
本記事には2次方程式の演習問題と解答例があります.
2次方程式の演習をしたい人向けの記事です.
2次方程式の演習問題
次の方程式を解け.
(1) x^2 + 3x - 10 = 0
(2) 2x^2 + 7x + 3 = 0
(3) 6x^2 + 11x - 10 = 0
(4) 2x^2 - 10x +12 = 0
(5) 4x^2 - 4x + 1 = 0
(6) x^2 + 18x + 81 = 0
(7) x^2 + 4x -18 = 3
(8) -3x^2 + 2x + 1 = 0
(9) x^2 + 5x + 3 = 0
(10) 3x^2 + x - 6 = 1
(11) \begin{aligned} \frac{1}{9} x^2 - \frac{1}{2} x - \frac{5}{18} = 0 \end{aligned}
(12) 2x^2 - 3x - 4 = 0
(13) 3x^2 + 9x + 2 = 0
(14) x^2 + 4x - 1 = 0
(15) 9x^2 + 9x - 9 = 0
(16) 72x^2 - 43x - 77 = 0
(17) x^2 - 22x + 121 = 0
(18) 49x^2 + 168x + 144 = 0
(19) 2x^2 + x - 5 = -x^2 -x -1
(20) 45x^2 + 82x - 91 = 0
2次方程式の文章問題
問題.
80cm の針金を使って長方形を作ったところ,面積が 300cm^2 の長方形ができた.このとき長方形の短い方の辺の長さを求めよ.
2次方程式の演習問題の解答例
(1)
\begin{aligned}
x^2 + 3x - 10 &= 0 \\
(x + 5)(x - 2) &= 0 \\
x = 2 , -5
\end{aligned}
(2)
\begin{aligned}
2x^2 + 7x + 3 &= 0 \\
(2x + 1)(x + 3) &= 0 \\
x = -\frac{1}{2} , -3
\end{aligned}
(3)
\begin{aligned}
6x^2 + 11x - 10 &= 0 \\
(3x - 2)(2x + 5) &= 0 \\
x = \frac{2}{3} , -\frac{5}{2}
\end{aligned}
(4)
\begin{aligned}
2x^2 - 10x +12 &= 0 \\
2(x^2 -5x + 6) &= 0 \\
2(x - 2)(x - 3) &= 0 \\
x = 2, 3
\end{aligned}
(5)
\begin{aligned}
4x^2 - 4x + 1 &= 0 \\
(2x - 1)^2 &= 0 \\
x = \frac{1}{2}
\end{aligned}
(6)
\begin{aligned}
x^2 + 18x + 81 &= 0 \\
(x + 9)^2 &= 0 \\
x = -9
\end{aligned}
(7)
\begin{aligned}
x^2 + 4x -18 &= 3 \\
x^2 + 4x -21 &= 0 \\
(x - 3)(x + 7) &= 0 \\
x = 3, -7
\end{aligned}
(8)
\begin{aligned}
-3x^2 + 2x + 1 &= 0 \\
-(3x^2 - 2x - 1) &= 0 \\
-(3x + 1)(x - 1) &= 0 \\
x = -\frac{1}{3} , 1
\end{aligned}
(9)
x^2 + 5x + 3 = 0
解の公式より
\begin{aligned}
x &= \frac{-5 \pm \sqrt{25 - 12}}{2} \\
x &= \frac{-5 \pm \sqrt{13}}{2} \\
\end{aligned}
(10)
3x^2 + x - 6 = 1
3x^2 + x - 7 = 0
解の公式より
\begin{aligned}
x &= \frac{-1 \pm \sqrt{1 + 84}}{6} \\
x &= \frac{-1 \pm \sqrt{85}}{2} \\
\end{aligned}
(11)
\begin{aligned}
\frac{1}{9} x^2 - \frac{1}{2} x - \frac{5}{18} &= 0 \\
2x^2 -9x -5 &= 0 \\
(2x + 1)(x - 5) &= 0 \\
x = - \frac{1}{2} , 5
\end{aligned}
(12)
2x^2 - 3x - 4 = 0
解の公式より
\begin{aligned}
x &= \frac{3 \pm \sqrt{9 + 32}}{4} \\
x &= \frac{3 \pm \sqrt{41}}{4} \\
\end{aligned}
(13)
3x^2 + 9x + 2 = 0
解の公式より
\begin{aligned}
x &= \frac{-9 \pm \sqrt{81 - 24}}{6} \\
x &= \frac{-9 \pm \sqrt{57}}{6} \\
\end{aligned}
(14)
x^2 + 4x - 1 = 0
解の公式より
\begin{aligned}
x &= -2 \pm \sqrt{4 + 1} \\
x &= -2 \pm \sqrt{5} \\
\end{aligned}
(15)
\begin{aligned}
9x^2 + 9x - 9 &= 0 \\
9(x^2 + x - 1 ) &= 0 \\
\end{aligned}
解の公式より
\begin{aligned}
x &= \frac{-1 \pm \sqrt{1 + 4}}{2} \\
x &= \frac{-1 \pm \sqrt{5}}{2} \\
\end{aligned}
(16)
\begin{aligned}
72x^2 - 43x - 77 &= 0 \\
(9x + 7)(8x - 11) &= 0 \\
x = -\frac{7}{9} , \frac{11}{8}
\end{aligned}
(17)
\begin{aligned}
x^2 - 22x + 121 &= 0 \\
(x - 11)^2 &= 0 \\
x = 11
\end{aligned}
(18)
\begin{aligned}
49x^2 + 168x + 144 &= 0 \\
(7x + 12)^2 &= 0 \\
x = -\frac{12}{7}
\end{aligned}
(19)
\begin{aligned}
2x^2 + x - 5 &= -x^2 -x -1 \\
3x^2 +2x - 4 &= 0
\end{aligned}
解の公式より
\begin{aligned}
x &= \frac{-1 \pm \sqrt{1 + 12}}{3} \\
x &= \frac{-1 \pm \sqrt{13}}{3} \\
\end{aligned}
(20) 45x^2 + 82x - 91= 0
\begin{aligned}
45x^2 + 82x - 91&= 0 \\
(9x - 7)(5x + 13) &= 0 \\
x = \frac{7}{9} , -\frac{13}{5}
\end{aligned}
2次方程式の文章問題の解答例
長方形の短辺をx cm とすると,
\begin{aligned}
\frac{80 - 2x}{2} \cdot x &= 300 \\
(40 - x)x - 300 &= 0 \\
x^2 - 40x + 300 &= 0 \\
(x -10)(x - 30) &= 0 \\
x = 10, 30
\end{aligned}
短い方の辺なので x = 10
よって,求める辺の長さは 10cm