2次方程式の演習問題

本記事には2次方程式の演習問題と解答例があります.
2次方程式の演習をしたい人向けの記事です.

2次方程式の演習問題

次の方程式を解け.

(1) x^2 + 3x - 10 = 0

(2) 2x^2 + 7x + 3 = 0

(3) 6x^2 + 11x - 10 = 0

(4) 2x^2 - 10x +12 = 0

(5) 4x^2 - 4x + 1 = 0

(6) x^2 + 18x + 81 = 0

(7) x^2 + 4x -18 = 3

(8) -3x^2 + 2x + 1 = 0

(9) x^2 + 5x + 3 = 0

(10) 3x^2 + x - 6 = 1

(11) \begin{aligned} \frac{1}{9} x^2 - \frac{1}{2} x - \frac{5}{18} = 0 \end{aligned}

(12) 2x^2 - 3x - 4 = 0

(13) 3x^2 + 9x + 2 = 0

(14) x^2 + 4x - 1 = 0

(15) 9x^2 + 9x - 9 = 0

(16) 72x^2 - 43x - 77 = 0

(17) x^2 - 22x + 121 = 0

(18) 49x^2 + 168x + 144 = 0

(19) 2x^2 + x - 5 = -x^2 -x -1

(20) 45x^2 + 82x - 91 = 0

2次方程式の文章問題

問題.
80cm の針金を使って長方形を作ったところ,面積が 300cm^2 の長方形ができた.このとき長方形の短い方の辺の長さを求めよ.

2次方程式の演習問題の解答例

(1)
\begin{aligned} x^2 + 3x - 10 &= 0 \\ (x + 5)(x - 2) &= 0 \\ x = 2 , -5 \end{aligned}

(2)
\begin{aligned} 2x^2 + 7x + 3 &= 0 \\ (2x + 1)(x + 3) &= 0 \\ x = -\frac{1}{2} , -3 \end{aligned}

(3)
\begin{aligned} 6x^2 + 11x - 10 &= 0 \\ (3x - 2)(2x + 5) &= 0 \\ x = \frac{2}{3} , -\frac{5}{2} \end{aligned}

(4)
\begin{aligned} 2x^2 - 10x +12 &= 0 \\ 2(x^2 -5x + 6) &= 0 \\ 2(x - 2)(x - 3) &= 0 \\ x = 2, 3 \end{aligned}

(5)
\begin{aligned} 4x^2 - 4x + 1 &= 0 \\ (2x - 1)^2 &= 0 \\ x = \frac{1}{2} \end{aligned}

(6)
\begin{aligned} x^2 + 18x + 81 &= 0 \\ (x + 9)^2 &= 0 \\ x = -9 \end{aligned}

(7)
\begin{aligned} x^2 + 4x -18 &= 3 \\ x^2 + 4x -21 &= 0 \\ (x - 3)(x + 7) &= 0 \\ x = 3, -7 \end{aligned}

(8)
\begin{aligned} -3x^2 + 2x + 1 &= 0 \\ -(3x^2 - 2x - 1) &= 0 \\ -(3x + 1)(x - 1) &= 0 \\ x = -\frac{1}{3} , 1 \end{aligned}

(9)
x^2 + 5x + 3 = 0
解の公式より
\begin{aligned} x &= \frac{-5 \pm \sqrt{25 - 12}}{2} \\ x &= \frac{-5 \pm \sqrt{13}}{2} \\ \end{aligned}

(10)
3x^2 + x - 6 = 1
3x^2 + x - 7 = 0
解の公式より
\begin{aligned} x &= \frac{-1 \pm \sqrt{1 + 84}}{6} \\ x &= \frac{-1 \pm \sqrt{85}}{2} \\ \end{aligned}

(11)
\begin{aligned} \frac{1}{9} x^2 - \frac{1}{2} x - \frac{5}{18} &= 0 \\ 2x^2 -9x -5 &= 0 \\ (2x + 1)(x - 5) &= 0 \\ x = - \frac{1}{2} , 5 \end{aligned}

(12)
2x^2 - 3x - 4 = 0
解の公式より
\begin{aligned} x &= \frac{3 \pm \sqrt{9 + 32}}{4} \\ x &= \frac{3 \pm \sqrt{41}}{4} \\ \end{aligned}

(13)
3x^2 + 9x + 2 = 0
解の公式より
\begin{aligned} x &= \frac{-9 \pm \sqrt{81 - 24}}{6} \\ x &= \frac{-9 \pm \sqrt{57}}{6} \\ \end{aligned}

(14)
x^2 + 4x - 1 = 0
解の公式より
\begin{aligned} x &= -2 \pm \sqrt{4 + 1} \\ x &= -2 \pm \sqrt{5} \\ \end{aligned}

(15)
\begin{aligned} 9x^2 + 9x - 9 &= 0 \\ 9(x^2 + x - 1 ) &= 0 \\ \end{aligned}
解の公式より
\begin{aligned} x &= \frac{-1 \pm \sqrt{1 + 4}}{2} \\ x &= \frac{-1 \pm \sqrt{5}}{2} \\ \end{aligned}

(16)
\begin{aligned} 72x^2 - 43x - 77 &= 0 \\ (9x + 7)(8x - 11) &= 0 \\ x = -\frac{7}{9} , \frac{11}{8} \end{aligned}

(17)
\begin{aligned} x^2 - 22x + 121 &= 0 \\ (x - 11)^2 &= 0 \\ x = 11 \end{aligned}

(18)
\begin{aligned} 49x^2 + 168x + 144 &= 0 \\ (7x + 12)^2 &= 0 \\ x = -\frac{12}{7} \end{aligned}

(19)
\begin{aligned} 2x^2 + x - 5 &= -x^2 -x -1 \\ 3x^2 +2x - 4 &= 0 \end{aligned}
解の公式より
\begin{aligned} x &= \frac{-1 \pm \sqrt{1 + 12}}{3} \\ x &= \frac{-1 \pm \sqrt{13}}{3} \\ \end{aligned}

(20) 45x^2 + 82x - 91= 0
\begin{aligned} 45x^2 + 82x - 91&= 0 \\ (9x - 7)(5x + 13) &= 0 \\ x = \frac{7}{9} , -\frac{13}{5} \end{aligned}

2次方程式の文章問題の解答例

長方形の短辺をx cm とすると,
\begin{aligned} \frac{80 - 2x}{2} \cdot x &= 300 \\ (40 - x)x - 300 &= 0 \\ x^2 - 40x + 300 &= 0 \\ (x -10)(x - 30) &= 0 \\ x = 10, 30 \end{aligned}
短い方の辺なので x = 10
よって,求める辺の長さは 10cm

 

「勝手気ままに高校数学」シリーズ一覧へ

      

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

CAPTCHA