積和公式と和積公式
本記事では,三角関数の積和公式と和積公式を証明します.
加法定理を使って証明しますので,加法定理がわからない人は以下の記事を参考にしてください.
積和公式
積和公式.
\begin{aligned}
\sin{\alpha} \cos{\beta} &=
\frac{1}{2} \{ \sin{(\alpha + \beta)} + \sin{(\alpha - \beta)} \} \\
\cos{\alpha} \sin{\beta} &=
\frac{1}{2} \{ \sin{(\alpha + \beta)} - \sin{(\alpha - \beta)} \} \\
\cos{\alpha} \cos{\beta} &=
\frac{1}{2} \{ \cos{(\alpha + \beta)} + \cos{(\alpha - \beta)} \} \\
\sin{\alpha} \sin{\beta} &=
- \frac{1}{2} \{ \cos{(\alpha + \beta)} - \cos{(\alpha - \beta)} \} \\
\end{aligned}
\sin{\alpha} \cos{\beta} = \frac{1}{2} \{ \sin{(\alpha + \beta)} + \sin{(\alpha - \beta)} \} の証明.
正弦の加法定理
\sin(\alpha + \beta) = \sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}
と
\sin(\alpha - \beta) = \sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}
を足して,
\begin{aligned}
\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2 \sin{\alpha} \cos{\beta}
\end{aligned}
\begin{aligned}
\sin{\alpha} \cos{\beta} = \frac{1}{2} \{ \sin{(\alpha + \beta)} + \sin{(\alpha - \beta)} \}
\end{aligned}
\cos{\alpha} \sin{\beta} =
\frac{1}{2} \{ \sin{(\alpha + \beta)} - \sin{(\alpha - \beta)} \} の証明.
正弦の加法定理
\sin(\alpha + \beta) = \sin{\alpha} \cos{\beta} + \cos{\alpha} \sin{\beta}
から
\sin(\alpha - \beta) = \sin{\alpha} \cos{\beta} - \cos{\alpha} \sin{\beta}
を引いて,
\begin{aligned}
\sin(\alpha + \beta) - \sin(\alpha - \beta) = 2 \cos{\alpha} \sin{\beta}
\end{aligned}
\begin{aligned}
\cos{\alpha} \sin{\beta} =
\frac{1}{2} \{ \sin{(\alpha + \beta)} - \sin{(\alpha - \beta)} \}
\end{aligned}
\cos{\alpha} \cos{\beta} =
\frac{1}{2} \{ \cos{(\alpha + \beta)} + \cos{(\alpha - \beta)} \} の証明.
余弦の加法定理
\cos(\alpha + \beta) = \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}
と
cos(\alpha - \beta) = \cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}
を足して,
\begin{aligned}
\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2 \cos{\alpha} \cos{\beta}
\end{aligned}
\begin{aligned}
\cos{\alpha} \cos{\beta} = \frac{1}{2} \{ \cos{(\alpha + \beta)} + \cos{(\alpha - \beta)} \}
\end{aligned}
\sin{\alpha} \sin{\beta} =
- \frac{1}{2} \{ \cos{(\alpha + \beta)} - \cos{(\alpha - \beta)} \} の証明.
余弦の加法定理
\cos(\alpha + \beta) = \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}
から
cos(\alpha - \beta) = \cos{\alpha}\cos{\beta} + \sin{\alpha}\sin{\beta}
を引いて,
\begin{aligned}
\cos(\alpha + \beta) - \cos(\alpha - \beta) = - 2 \sin{\alpha} \sin{\beta}
\end{aligned}
\begin{aligned}
\sin{\alpha} \sin{\beta} = - \frac{1}{2} \{ \cos{(\alpha + \beta)} - \cos{(\alpha - \beta)} \}
\end{aligned}
和積公式
和積公式.
\begin{aligned}
\sin{A} + \sin{B} &= 2 \sin{ \frac{A+B}{2} } \cos{ \frac{A - B}{2} } \\
\sin{A} - \sin{B} &= 2 \cos{ \frac{A+B}{2} } \sin{ \frac{A - B}{2} } \\
\cos{A} + \cos{B} &= 2 \cos{ \frac{A+B}{2} } \cos{ \frac{A - B}{2} } \\
\cos{A} - \cos{B} &= - 2 \sin{ \frac{A+B}{2} } \sin{ \frac{A - B}{2} } \\
\end{aligned}
\sin{A} + \sin{B} = 2 \sin{ \frac{A+B}{2} } \cos{ \frac{A - B}{2} } の証明.
\alpha + \beta = A , \alpha - \beta = B とおく.
すると, \begin{aligned} \alpha = \frac{A + B}{2} \end{aligned} , \begin{aligned} \beta = \frac{A - B}{2} \end{aligned} となる.
これらを積和公式
\begin{aligned}
\sin{\alpha} \cos{\beta} = \frac{1}{2} \{ \sin{(\alpha + \beta)} + \sin{(\alpha - \beta)} \}
\end{aligned}
に代入して,
\begin{aligned}
\sin{\frac{A + B}{2}} \cos{\frac{A - B}{2}} = \frac{1}{2} ( \sin{A} + \sin{B} )
\end{aligned}
\begin{aligned}
\sin{A} + \sin{B} = 2 \sin{\frac{A + B}{2}} \cos{\frac{A - B}{2}}
\end{aligned}
\sin{A} - \sin{B} = 2 \cos{ \frac{A+B}{2} } \sin{ \frac{A - B}{2} } の証明.
\alpha + \beta = A , \alpha - \beta = B とおく.
すると, \begin{aligned} \alpha = \frac{A + B}{2} \end{aligned} , \begin{aligned} \beta = \frac{A - B}{2} \end{aligned} となる.
これらを積和公式
\begin{aligned}
\cos{\alpha} \sin{\beta} = \frac{1}{2} \{ \sin{(\alpha + \beta)} - \sin{(\alpha - \beta)} \}
\end{aligned}
に代入して,
\begin{aligned}
\cos{\frac{A + B}{2}} \sin{\frac{A - B}{2}} = \frac{1}{2} ( \sin{A} - \sin{B} )
\end{aligned}
\begin{aligned}
\sin{A} - \sin{B} = 2 \cos{\frac{A + B}{2}} \sin{\frac{A - B}{2}}
\end{aligned}
\cos{A} + \cos{B} = 2 \cos{ \frac{A+B}{2} } \cos{ \frac{A - B}{2} } の証明.
\alpha + \beta = A , \alpha - \beta = B とおく.
すると, \begin{aligned} \alpha = \frac{A + B}{2} \end{aligned} , \begin{aligned} \beta = \frac{A - B}{2} \end{aligned} となる.
これらを積和公式
\begin{aligned}
\cos{\alpha} \cos{\beta} = \frac{1}{2} \{ \cos{(\alpha + \beta)} + \cos{(\alpha - \beta)} \}
\end{aligned}
に代入して,
\begin{aligned}
\cos{\frac{A + B}{2}} \cos{\frac{A - B}{2}} = \frac{1}{2} ( \cos{A} + \cos{B} )
\end{aligned}
\begin{aligned}
\cos{A} + \cos{B} = 2 \cos{\frac{A + B}{2}} \cos{\frac{A - B}{2}}
\end{aligned}
\cos{A} - \cos{B} = - 2 \sin{ \frac{A+B}{2} } \sin{ \frac{A - B}{2} } の証明.
\alpha + \beta = A , \alpha - \beta = B とおく.
すると, \begin{aligned} \alpha = \frac{A + B}{2} \end{aligned} , \begin{aligned} \beta = \frac{A - B}{2} \end{aligned} となる.
これらを積和公式
\begin{aligned}
\sin{\alpha} \sin{\beta} = - \frac{1}{2} \{ \cos{(\alpha + \beta)} - \cos{(\alpha - \beta)} \}
\end{aligned}
に代入して,
\begin{aligned}
\sin{\frac{A + B}{2}} \sin{\frac{A - B}{2}} = - \frac{1}{2} ( \cos{A} - \cos{B} )
\end{aligned}
\begin{aligned}
\cos{A} - \cos{B} = - 2 \sin{\frac{A + B}{2}} \sin{\frac{A - B}{2}}
\end{aligned}